论文标题
基于视觉的任务中的对抗贴片攻击和防御:一项调查
Adversarial Patch Attacks and Defences in Vision-Based Tasks: A Survey
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Adversarial attacks in deep learning models, especially for safety-critical systems, are gaining more and more attention in recent years, due to the lack of trust in the security and robustness of AI models. Yet the more primitive adversarial attacks might be physically infeasible or require some resources that are hard to access like the training data, which motivated the emergence of patch attacks. In this survey, we provide a comprehensive overview to cover existing techniques of adversarial patch attacks, aiming to help interested researchers quickly catch up with the progress in this field. We also discuss existing techniques for developing detection and defences against adversarial patches, aiming to help the community better understand this field and its applications in the real world.