论文标题

OADAT:标准化图像处理的实验和合成临床光声数据

OADAT: Experimental and Synthetic Clinical Optoacoustic Data for Standardized Image Processing

论文作者

Ozdemir, Firat, Lafci, Berkan, Deán-Ben, Xosé Luís, Razansky, Daniel, Perez-Cruz, Fernando

论文摘要

光声(OA)成像是基于对生物组织的激发,该生物组织具有纳米持续激光脉冲,然后随后检测到通过光吸收介导的热弹性膨胀产生的超声波。 OA成像具有丰富的光学对比度和深层组织高分辨率之间的强大组合。这使得在临床和实验室环境中探索了许多有吸引力的新应用程序。但是,没有使用不同类型的实验设置和相关处理方法生成的标准化数据集,可以促进OA在临床环境中更广泛应用的进步。这使新的和已建立的数据处理方法之间的客观比较变得复杂,通常会导致定性结果和对数据的任意解释。在本文中,我们提供实验和合成的OA原始信号以及具有不同实验参数和层析成像采集几何形状的重建图像结构域数据集。我们进一步提供了训练有素的神经网络,以应对与OA图像处理相关的三个重要挑战,即在有限的视图层析成像条件下准确的重建,去除空间不足的采样伪像以及解剖学细分以改善图像重建。具体而言,我们将与上述挑战相对应的44个实验定义为用于开发更高级处理方法的参考的基准。

Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by subsequent detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion. OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues. This enabled the exploration of a number of attractive new applications both in clinical and laboratory settings. However, no standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings. This complicates an objective comparison between new and established data processing methods, often leading to qualitative results and arbitrary interpretations of the data. In this paper, we provide both experimental and synthetic OA raw signals and reconstructed image domain datasets rendered with different experimental parameters and tomographic acquisition geometries. We further provide trained neural networks to tackle three important challenges related to OA image processing, namely accurate reconstruction under limited view tomographic conditions, removal of spatial undersampling artifacts and anatomical segmentation for improved image reconstruction. Specifically, we define 44 experiments corresponding to the aforementioned challenges as benchmarks to be used as a reference for the development of more advanced processing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源