论文标题

图形增强单击模型以用于Web搜索

A Graph-Enhanced Click Model for Web Search

论文作者

Lin, Jianghao, Liu, Weiwen, Dai, Xinyi, Zhang, Weinan, Li, Shuai, Tang, Ruiming, He, Xiuqiang, Hao, Jianye, Yu, Yong

论文摘要

为了更好地利用搜索日志和建模用户的行为模式,提出了许多点击模型来提取用户的隐式交互反馈。大多数传统点击模型基于概率图形模型(PGM)框架,该框架需要手动设计的依赖项,并且可能会过度简化用户行为。最近,提出了基于神经网络的方法来通过增强表达能力并允许灵活的依赖性来提高用户行为的预测准确性。但是,他们仍然遭受数据稀疏性和冷启动问题的困扰。在本文中,我们提出了一个新颖的图形增强点击模型(GraphCM),用于Web搜索。首先,我们将每个查询或文档视为顶点,并分别针对查询和文档提出了新颖的均质图构造方法,以完全利用会议内和会议间信息,以解决稀疏性和冷启动问题。其次,在考试假设之后,我们将吸引力估计值和检查预测分别建模,以输出吸引力得分和检查概率,在该分数中,应用图形神经网络和邻居相互作用技术用于提取在预构建的均质图中编码的辅助信息。最后,我们将组合功能应用于将考试概率和吸引力得分整合到点击预测中。在三个现实世界会话数据集上进行的广泛实验表明,GraphCM不仅胜过最先进的模型,而且还可以在解决数据稀疏性和冷启动问题方面取得卓越的性能。

To better exploit search logs and model users' behavior patterns, numerous click models are proposed to extract users' implicit interaction feedback. Most traditional click models are based on the probabilistic graphical model (PGM) framework, which requires manually designed dependencies and may oversimplify user behaviors. Recently, methods based on neural networks are proposed to improve the prediction accuracy of user behaviors by enhancing the expressive ability and allowing flexible dependencies. However, they still suffer from the data sparsity and cold-start problems. In this paper, we propose a novel graph-enhanced click model (GraphCM) for web search. Firstly, we regard each query or document as a vertex, and propose novel homogeneous graph construction methods for queries and documents respectively, to fully exploit both intra-session and inter-session information for the sparsity and cold-start problems. Secondly, following the examination hypothesis, we separately model the attractiveness estimator and examination predictor to output the attractiveness scores and examination probabilities, where graph neural networks and neighbor interaction techniques are applied to extract the auxiliary information encoded in the pre-constructed homogeneous graphs. Finally, we apply combination functions to integrate examination probabilities and attractiveness scores into click predictions. Extensive experiments conducted on three real-world session datasets show that GraphCM not only outperforms the state-of-art models, but also achieves superior performance in addressing the data sparsity and cold-start problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源