论文标题

修订:使用智能手机摄像头的远程生命体征测量

ReViSe: Remote Vital Signs Measurement Using Smartphone Camera

论文作者

Qiao, Donghao, Ayesha, Amtul Haq, Zulkernine, Farhana, Masroor, Raihan, Jaffar, Nauman

论文摘要

我们提出了一个端到端框架,以测量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP),该方法是根据用户脸部用智能手机相机捕获的用户脸部视频中的RPPG方法。我们以深度学习的神经网络模型实时提取面部标记。通过使用预测的面部标记提取多个称为感兴趣的区域(ROI)的多个面部贴片。使用几种过滤器来减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。 HR,HRV和SPO2的测量值在两个公共RPPG数据集上进行了验证,即Tokyotech RPPG和脉搏率检测(纯)数据集,在该数据集中,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73 beats-beats-lbeats-lbeats-lbeats-peats-pears-peans-simute(bpm)和3.9555bpm均等; b)对于HRV,分别为18.55ms和25.03ms,c)对于SPO2,纯数据集的MAE为1.64%。我们在日常生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们基于深度学习的BP估计模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到了6.7mmHg的MAE,舒张压(DBP)的MAE为9.6mmHg。修订框架已在数据集中得到了验证,其中大多数最先进的技术报道,与日常生活环境中录制的视频相比,在日常生活环境中记录了视频。

We propose an end-to-end framework to measure people's vital signs including Heart Rate (HR), Heart Rate Variability (HRV), Oxygen Saturation (SpO2) and Blood Pressure (BP) based on the rPPG methodology from the video of a user's face captured with a smartphone camera. We extract face landmarks with a deep learning-based neural network model in real-time. Multiple face patches also called Regions-of-Interest (RoIs) are extracted by using the predicted face landmarks. Several filters are applied to reduce the noise from the RoIs in the extracted cardiac signals called Blood Volume Pulse (BVP) signal. The measurements of HR, HRV and SpO2 are validated on two public rPPG datasets namely the TokyoTech rPPG and the Pulse Rate Detection (PURE) datasets, on which our models achieved the following Mean Absolute Errors (MAE): a) for HR, 1.73Beats-Per-Minute (bpm) and 3.95bpm respectively; b) for HRV, 18.55ms and 25.03ms respectively, and c) for SpO2, an MAE of 1.64% on the PURE dataset. We validated our end-to-end rPPG framework, ReViSe, in daily living environment, and thereby created the Video-HR dataset. Our HR estimation model achieved an MAE of 2.49bpm on this dataset. Since no publicly available rPPG datasets existed for BP measurement with face videos, we used a dataset with signals from fingertip sensor to train our deep learning-based BP estimation model and also created our own video dataset, Video-BP. On our Video-BP dataset, our BP estimation model achieved an MAE of 6.7mmHg for Systolic Blood Pressure (SBP), and an MAE of 9.6mmHg for Diastolic Blood Pressure (DBP). ReViSe framework has been validated on datasets with videos recorded in daily living environment as opposed to less noisy laboratory environment as reported by most state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源