论文标题

Is Multi-Modal Necessarily Better?多模式假新闻检测的鲁棒性评估

Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-modal Fake News Detection

论文作者

Chen, Jinyin, Jia, Chengyu, Zheng, Haibin, Chen, Ruoxi, Fu, Chenbo

论文摘要

假新闻的扩散及其严重的负面社会影响力推动了假新闻检测方法成为网络经理的必要工具。同时,社交媒体的多媒体性质使多模式的假新闻检测因其捕获更多模态特征的能力而受欢迎,而不是单模式检测方法。但是,当前有关多模式检测的文献更有可能追求检测准确性,但忽略了检测器的鲁棒性。为了解决这个问题,我们建议对多模式假新闻探测器进行全面的鲁棒性评估。在这项工作中,我们模拟了恶意用户和开发人员的攻击方法,即发布假新闻并注入后门。具体而言,我们使用五种对抗和两种后门攻击方法评估了多模式探测器。实验结果暗示:(1)在对抗攻击下,最先进的检测器的检测性能显着降解,甚至比一般检测器更糟; (2)大多数多模式探测器受到视觉模态的攻击比文本模态更容易受到攻击; (3)当受欢迎的事件的图像受到后门攻击时,探测器会导致探测器的重大降解; (4)在多模式攻击下这些探测器的性能比在单模式攻击下更糟糕; (5)防御方法将改善多模式探测器的鲁棒性。

The proliferation of fake news and its serious negative social influence push fake news detection methods to become necessary tools for web managers. Meanwhile, the multi-media nature of social media makes multi-modal fake news detection popular for its ability to capture more modal features than uni-modal detection methods. However, current literature on multi-modal detection is more likely to pursue the detection accuracy but ignore the robustness of the detector. To address this problem, we propose a comprehensive robustness evaluation of multi-modal fake news detectors. In this work, we simulate the attack methods of malicious users and developers, i.e., posting fake news and injecting backdoors. Specifically, we evaluate multi-modal detectors with five adversarial and two backdoor attack methods. Experiment results imply that: (1) The detection performance of the state-of-the-art detectors degrades significantly under adversarial attacks, even worse than general detectors; (2) Most multi-modal detectors are more vulnerable when subjected to attacks on visual modality than textual modality; (3) Popular events' images will cause significant degradation to the detectors when they are subjected to backdoor attacks; (4) The performance of these detectors under multi-modal attacks is worse than under uni-modal attacks; (5) Defensive methods will improve the robustness of the multi-modal detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源