论文标题
矿场:建造具有互联网规模知识的开放式体现的代理
MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
论文作者
论文摘要
自主代理在Atari Games等专业领域取得了长足的进步。但是,他们通常在具有有限和手动构想的目标的孤立环境中学习Tabula Rasa,因此未能跨越各种任务和能力。受到人类如何不断学习和适应开放世界的启发,我们主张建立通才代理的三位一体:1)一个支持多种任务和目标的环境,2)多模式知识的大规模数据库,以及3)一种灵活且可扩展的代理体系结构。我们介绍了MinedoJo,这是一个建立在流行的Minecraft游戏上的新框架,该游戏具有模拟套件,其中包含数千种不同的开放式任务,以及带有Minecraft视频,教程,Wiki页面和论坛讨论的Internet规模知识库。使用Minedojo的数据,我们提出了一种新型的代理学习算法,该算法利用大型预训练的视频语言模型作为学习的奖励功能。我们的经纪人能够解决以自由形式的语言指定的各种开放式任务,而无需任何手动设计的密集塑造奖励。我们开源的模拟套件,知识库,算法实施和预审预周座的模型(https://minedojo.org),以促进研究以通常具有能力的体现剂的目标。
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite, knowledge bases, algorithm implementation, and pretrained models (https://minedojo.org) to promote research towards the goal of generally capable embodied agents.