论文标题

用于隐式runge-kutta和runge-kutta-nyström方法的有效订单最佳预处理适用于大型抛物线和双曲线PDE

Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs

论文作者

Clines, Michael R., Howle, Victoria E., Long, Katharine R.

论文摘要

我们概括了Mardal,Nilssen和Staff的先前工作(2007年,Siam J.Sci。Comp。v。29,第361-375页)和Rana,Howle,Long,Long,Long,Meek和Milestone(2021,Siam J.Sci。Comp。Comp。v。43v。43,第475-495页,第475-495页),在较大的阶级上,供应范围范围,以供pos-poctim-precoptim portimation cor-potriolity cor-potirics cor-por-porcition p. parabil and p. 方法。所考虑的问题是$ u_ {t} = - \ Mathcal {k} u+g $和$ u_ {tt} = - \ Mathcal {k} u+g $的问题,其中操作员$ \ Mathcal {k} $由$ \ nabl {k} u:= - \ cdot \ cdot \ cdot \ cdot \ cdot u \ right)+βU$和功能$α$和$β$受到限制,因此$α> 0 $和$β\ ge0 $。所考虑的方法是抛物线方程和隐式runge-kutta-kutta-nyStröm方法的A稳定隐式runge- kutta方法。我们证明了由这些问题引起的阶段方程系统的一类块预处理的顺序最优性,此外,我们表明了Rana等人的LD和DU前提。在此课程中。我们对此类别的几个测试问题进行数值实验 - 2D扩散方程,Pennes Bioeheat方程,波动方程和klein-Gordon方程,具有恒定和可变系数。我们的实验表明,这些预处理,尤其是LD预处理程序,成功地减少了系统的状况数量,并改善了收敛速率和解决应用于阶段方程的GMRE的时间。

We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms $u_{t}=-\mathcal{K}u+g$ and $u_{tt}=-\mathcal{K}u+g$, where the operator $\mathcal{K}$ is defined by $\mathcal{K}u:=-\nabla\cdot\left(α\nabla u\right)+βu$ and the functions $α$ and $β$ are restricted so that $α>0$, and $β\ge0$. The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nyström methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源