论文标题
统一的间隔图和分支系统,并应用于相对图C* - 代数
Unifying interval maps and branching systems with applications to relative graph C*-algebras
论文作者
论文摘要
我们通过分支系统描述了马尔可夫间隔地图,并发展了相对分支系统的理论,表征何时相对图C* - 代数是忠实的。当Markov Interval Maps $ F $具有逃生集时,我们使用结果来表征相关的相对图代数表示的注入性,从而将先前的工作改进了第一,第三和第四作者。
We describe Markov interval maps via branching systems and develop the theory of relative branching systems, characterizing when the associated representations of relative graph C*-algebras are faithful. When the Markov interval maps $f$ have escape sets, we use our results to characterize injectivity of the associated relative graph algebra representations, improving on previous work by the first, third, and fourth authors.