论文标题

Tooltango:在预测机器人计划综合的顺序工具相互作用中的常识概括

ToolTango: Common sense Generalization in Predicting Sequential Tool Interactions for Robot Plan Synthesis

论文作者

Tuli, Shreshth, Bansal, Rajas, Paul, Rohan, Mausam

论文摘要

在工厂或房屋等环境中协助我们的机器人必须学会使用对象作为执行任务的工具,例如使用托盘携带对象。我们认为学习常识性了解何时可能有用的问题,以及如何与其他工具一起使用其使用以完成由人类指示的高级任务。具体而言,我们引入了一种新型神经模型,称为Tooltango,该模型首先预测要使用的下一个工具,然后使用此信息来预测下一项动作。我们表明,该联合模型可以告知学习精细的策略,从而使机器人能够按顺序使用特定工具,并在使模型更加准确时增加了重要价值。 Tooltango使用图形神经网络编码世界状态,包括对象和它们之间的符号关系,并使用人类教师的演示进行了培训,该示范指导物理模拟器中的虚拟机器人。该模型学会了使用目标和动作历史记录的知识来参加现场,最终将符号动作解码为执行。至关重要的是,我们解决了缺少一些已知工具的未见环境的概括,但是存在其他看不见的工具。我们表明,通过通过从知识库中获得的预训练的嵌入来增强环境的表示,该模型可以有效地将其推广到新的环境中。实验结果表明,在预测具有看不见对象的新型环境中模拟的移动操纵器的成功符号计划时,至少48.8-58.1%的绝对改善比基线的绝对改善。这项工作朝着使机器人能够快速合成复杂任务的强大计划的方向,尤其是在新颖的环境中

Robots assisting us in environments such as factories or homes must learn to make use of objects as tools to perform tasks, for instance using a tray to carry objects. We consider the problem of learning commonsense knowledge of when a tool may be useful and how its use may be composed with other tools to accomplish a high-level task instructed by a human. Specifically, we introduce a novel neural model, termed TOOLTANGO, that first predicts the next tool to be used, and then uses this information to predict the next action. We show that this joint model can inform learning of a fine-grained policy enabling the robot to use a particular tool in sequence and adds a significant value in making the model more accurate. TOOLTANGO encodes the world state, comprising objects and symbolic relationships between them, using a graph neural network and is trained using demonstrations from human teachers instructing a virtual robot in a physics simulator. The model learns to attend over the scene using knowledge of the goal and the action history, finally decoding the symbolic action to execute. Crucially, we address generalization to unseen environments where some known tools are missing, but alternative unseen tools are present. We show that by augmenting the representation of the environment with pre-trained embeddings derived from a knowledge-base, the model can generalize effectively to novel environments. Experimental results show at least 48.8-58.1% absolute improvement over the baselines in predicting successful symbolic plans for a simulated mobile manipulator in novel environments with unseen objects. This work takes a step in the direction of enabling robots to rapidly synthesize robust plans for complex tasks, particularly in novel settings

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源