论文标题
质子质量半径和散射长度的第一次提取$ \ left |α_{ρ^0 p} \ right | $ $ρ^0 $光增生
First extraction of the proton mass radius and scattering length $\left|α_{ρ^0 p}\right| $ from $ρ^0$ photoproduction
论文作者
论文摘要
由于它涉及矢量夸克电流从真空中激发的最轻的物理状态,因此,接近阈值$ρ^0 $光生产被认为是研究质子半径的可能方法,以及$ρ^0 $ - 质子相互作用的散射长度的绝对值。在这项工作中,在假设偶极子形式的标量形式下,质子质量半径的值被计算为$ 0.85 \ pm 0.06 \ text {fm} $,通过拟合$γp\ rightArrowρ^0 p $ p $在接近thres-thres Entermont的反应的$γp\ rightarrowρ^0 p $。对于光矢量中的介子光增生生产,因为标量夸克的交换不被抑制,并且应该主导标量gluon交换,所以我们从$ρ^0 $光下提取的半径可能代表质子的夸克半径。这个事实可以解释为什么在这项工作中获得的值非常接近质子电荷半径。此外,$ρ^0 $的绝对值 - 质子散射长度$ |α_{ρ^0 p} | = 0.31 \ pm 0.06 \ text {fm} $在矢量中介孔支配模型中首次获得。该结果不听从一个规则,即向量中膜和质子散射长度的绝对值$ |α_{v p} | $随着中膜的质量而增加,这可以归因于将$ρ^0 $梅森视为分析中的一点。这些结果提供了有用的理论信息,以深入了解质子结构和质子 - 载体介子相互作用。
As it involves the lightest physical states excited from the vacuum by the vector quark current, near-threshold $ρ^0$ photoproduction is considered a possible way to research the proton radius and the absolute value of the scattering lengths of the $ρ^0$--proton interaction. In this work, under the assumption of a scalar form factor of dipole form, the value of the proton mass radius is calculated as $0.85\pm 0.06 \text{ fm }$ by fitting the differential cross section of the $γp \rightarrow ρ^0 p$ reaction at near-threshold energy. For light vector meson photoproduction, because the exchange of a scalar quark--antiquark pair is not suppressed and should dominate the scalar gluon exchange, the radius we extract from $ρ^0$ photoproduction is likely to represent the quark radius of the proton. This fact may explain why the value obtained in this work is very near the proton charge radius. Moreover, the absolute value of the $ρ^0$--proton scattering length $|α_{ρ^0 p}|= 0.31 \pm 0.06 \text{ fm}$ is obtained for the first time within the vector meson dominance model. This result disobeys the rule that the absolute value of the vector meson and proton scattering length $|α_{V p}|$ increases with the meson's mass, which can be attributed to treating the $ρ^0$ meson as a point in the analysis. These results provide useful theoretical information for an in-depth understanding of proton structure and the proton--vector meson interaction.