论文标题

型号不合时宜的几声开放式识别

Model-Agnostic Few-Shot Open-Set Recognition

论文作者

Boudiaf, Malik, Bennequin, Etienne, Tami, Myriam, Hudelot, Celine, Toubhans, Antoine, Piantanida, Pablo, Ayed, Ismail Ben

论文摘要

我们解决了几个射击的开放式识别(FSOSR)问题,即在我们只有很少的标签样本的一组类中对实例进行分类,同时检测不属于任何已知类别的实例。偏离现有文献,我们专注于开发模型不足的推理方法,这些方法可以插入任何现有模型,无论其架构或培训程序如何。通过评估嵌入的各种模型的质量,我们量化了模型 - 敏捷FSOSR的内在难度。此外,一项公平的经验评估表明,在FSOSR的电感环境中,KNN检测器和原型分类器的幼稚组合在专业或复杂方法之前。这些观察结果促使我们诉诸于转导,这是对标准的少数学习问题的流行而实用的放松。我们引入了开放式转导信息最大化方法OSTIM,该方法幻觉了异常的原型,同时最大程度地提高了提取的特征和分配之间的相互信息。通过跨越5个数据集的广泛实验,我们表明OSTIM在检测开放式实例时超过了电感和现有的转导方法,同时与最强的托管方法在分类封闭式实例中竞争。我们进一步表明,OSTIM的模型不可知论使其能够成功利用最新体系结构和培训策略的强大表现能力而没有任何超参数修改,这是一个有希望的迹象表明,即将到来的建筑进步将继续积极影响Ostim的表现。

We tackle the Few-Shot Open-Set Recognition (FSOSR) problem, i.e. classifying instances among a set of classes for which we only have few labeled samples, while simultaneously detecting instances that do not belong to any known class. Departing from existing literature, we focus on developing model-agnostic inference methods that can be plugged into any existing model, regardless of its architecture or its training procedure. Through evaluating the embedding's quality of a variety of models, we quantify the intrinsic difficulty of model-agnostic FSOSR. Furthermore, a fair empirical evaluation suggests that the naive combination of a kNN detector and a prototypical classifier ranks before specialized or complex methods in the inductive setting of FSOSR. These observations motivated us to resort to transduction, as a popular and practical relaxation of standard few-shot learning problems. We introduce an Open Set Transductive Information Maximization method OSTIM, which hallucinates an outlier prototype while maximizing the mutual information between extracted features and assignments. Through extensive experiments spanning 5 datasets, we show that OSTIM surpasses both inductive and existing transductive methods in detecting open-set instances while competing with the strongest transductive methods in classifying closed-set instances. We further show that OSTIM's model agnosticity allows it to successfully leverage the strong expressive abilities of the latest architectures and training strategies without any hyperparameter modification, a promising sign that architectural advances to come will continue to positively impact OSTIM's performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源