论文标题

使用转移学习方法基于CNN的农业种植术分类

Agricultural Plantation Classification using Transfer Learning Approach based on CNN

论文作者

Singh, Uphar, Musale, Tushar, Vyas, Ranjana, Vyas, O. P.

论文摘要

超光谱图像是从卫星中捕获的图像,从卫星中捕获了特定区域的空间和光谱信息。与RGB图像相比,一个超光谱图像包含更多的通道,因此包含有关图像中实体的更多信息。它使它们非常适合在快照中分类对象。在过去的几年中,随着深度学习,超光谱图像识别的效率显着提高。卷积神经网络(CNN)和多层感知器(MLP)已证明是对图像进行分类的绝佳过程。但是,他们遭受了长期训练时间和大量标记数据的要求,以达到预期的结果。在处理超光谱图像时,这些问题变得更加复杂。为了减少训练时间并减少对大型标记数据集的依赖,我们建议使用转移学习方法。随后,传输学习模型使用CNN和MLP模型所学的功能来解决在看不见的数据集中的新分类问题。进行了CNN和多个MLP体系结构模型的详细比较,以确定最适合目标的最佳体系结构。结果表明,层的缩放并不总是会导致准确性的提高,但通常会导致过度拟合,也会增加训练时间的增加。通过应用转移学习方法,训练时间更大程度地减少,而不是通过直接在大型数据集中训练新模型来解决问题,而不会影响准确性。

Hyper-spectral images are images captured from a satellite that gives spatial and spectral information of specific region.A Hyper-spectral image contains much more number of channels as compared to a RGB image, hence containing more information about entities within the image. It makes them well suited for the classification of objects in a snap. In the past years, the efficiency of hyper-spectral image recognition has increased significantly with deep learning. The Convolution Neural Network(CNN) and Multi-Layer Perceptron(MLP) has demonstrated to be an excellent process of classifying images. However, they suffer from the issues of long training time and requirement of large amounts of the labeled data, to achieve the expected outcome. These issues become more complex while dealing with hyper-spectral images. To decrease the training time and reduce the dependence on large labeled data-set, we propose using the method of transfer learning.The features learned by CNN and MLP models are then used by the transfer learning model to solve a new classification problem on an unseen dataset. A detailed comparison of CNN and multiple MLP architectural models is performed, to determine an optimum architecture that suits best the objective. The results show that the scaling of layers not always leads to increase in accuracy but often leads to over-fitting, and also an increase in the training time.The training time is reduced to greater extent by applying the transfer learning approach rather than just approaching the problem by directly training a new model on large data-sets, without much affecting the accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源