论文标题

$ \ Mathcal {pt} $ - 对称非线性耦合器的孤独波的变分方法

Variational approach to study solitary waves in $\mathcal{PT}$-symmetric nonlinear couplers

论文作者

Sahoo, Ambaresh, Sarma, Amarendra K.

论文摘要

从理论上讲,我们通过开发一个变性分析,在$ \ Mathcal {pt} $ - 对称方向纤维耦合器中研究了孤立波及其开关动力学。我们通过考虑对未扰动的非线性Schrödinger方程的耦合模式方程来分析$ \ Mathcal {pt} $ - 对称的Kerr耦合器的基本切换特性,这与我们与常规的对手相比。高阶扰动(Intrapulse Raman散射,自我静止和三阶分散体)的影响在飞秒时间尺度上进行了详细研究。在所有情况下,变异方法都成功地预测了每个数值观察到的开关特性。我们的半分析治疗有可能提供物理见解,以了解来自不同物理领域的各种非线性耦合器配置中的复杂开关动力学。

We theoretically investigate the solitary waves and their switching dynamics in a $\mathcal{PT}$-symmetric directional fiber coupler, exhibiting Kerr nonlinearity, by developing a variational analysis. We analyze the fundamental switching characteristics of the $\mathcal{PT}$-symmetric Kerr coupler in the picosecond timescale by considering the coupled-mode equation for the unperturbed nonlinear Schrödinger equation, which we compare to its conventional counterpart. The impacts of higher-order perturbations (intrapulse Raman scattering, self-steepening, and third-order dispersion) are investigated in detail in the femtosecond timescale. In all cases, the variational method successfully predicts each of the numerically observed switching characteristics. Our semianalytical treatment has the potential to provide physical insights into complex switching dynamics in various nonlinear coupler configurations from different areas of physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源