论文标题
在时空的前和叶面结构上
On the Pre- and Promonoidal Structure of Spacetime
论文作者
论文摘要
由Monoidal(又称张量)捕获的关节系统的概念是物理理论的组成,过程理论方法的基础。假设类别通过通常用来用分配器形成关节系统的函数来概括单类别。直观地,这允许形成可能再次给出系统的关节系统,而是由Presheaf给出的广义系统。这种额外的自由提供了一个新的,更丰富的联合系统概念,可以应用于时空的分类配方。尽管以前的配方依赖于部分单体结构,而部分形式仅在成对的独立(即空格分离)系统上定义,但在这里,我们给出了时空的具体公式,其中将关节系统的概念定义为任何一对系统的概念。可表示的预性与组合空间系统产生的实际系统完全相对应,而更通用的预性对应于虚拟系统,这些虚拟系统继承了其``实际''对应物的某些逻辑/组成属性。我们表明,有两种方法可以做到这一点,大致对应于相对论版本的连词和脱节。前者在洛伦兹歧管中赋予了空白结构的时空切片类别,而后者则通过(甚至更多)(甚至更多)概括的方式将这种结构相结合,以结合使互换定律失败的系统。
The notion of a joint system, as captured by the monoidal (a.k.a. tensor) product, is fundamental to the compositional, process-theoretic approach to physical theories. Promonoidal categories generalise monoidal categories by replacing the functors normally used to form joint systems with profunctors. Intuitively, this allows the formation of joint systems which may not always give a system again, but instead a generalised system given by a presheaf. This extra freedom gives a new, richer notion of joint systems that can be applied to categorical formulations of spacetime. Whereas previous formulations have relied on partial monoidal structure that is only defined on pairs of independent (i.e. spacelike separated) systems, here we give a concrete formulation of spacetime where the notion of a joint system is defined for any pair of systems as a presheaf. The representable presheaves correspond precisely to those actual systems that arise from combining spacelike systems, whereas more general presheaves correspond to virtual systems which inherit some of the logical/compositional properties of their ``actual'' counterparts. We show that there are two ways of doing this, corresponding roughly to relativistic versions of conjunction and disjunction. The former endows the category of spacetime slices in a Lorentzian manifold with a promonoidal structure, whereas the latter augments this structure with an (even more) generalised way to combine systems that fails the interchange law.