论文标题
时变金属元面的衍射现象
Diffraction Phenomena in Time-varying Metal-based Metasurfaces
论文作者
论文摘要
本文提出了一个分析框架,用于分析时变金属的超材料。具体而言,我们将研究介绍到时间调节的金属空气接口,这些金属空气接口嵌入了两个不同的半无限培养基之间,这些介质被单色平面波照亮的频率$ω_0$的单色平面波。该公式基于Floquet-Bloch模态膨胀,该扩展考虑了结构($ t_s =2π/ω_s)$的时间周期性和整体方程技术。它允许提取反射/传输系数,并涉及有关时间调节金属筛网的动态响应和分散曲线的非平凡特征。另外,提出的配方具有相关的分析等效电路,该电路可以使衍射现象的物理见解。空间和时间调制的超材料之间的相似性和差异通过建议的电路模型讨论。最后,提出了一些分析结果以验证当前框架。通过自我实施有限差分时间域(FDTD)方法提供的数值计算观察到了良好的一致性。有趣的是,目前的结果表明,基于时间调节的金属屏幕可以用作脉冲源(当$ω_s\ llω_0$),beamformers($ω_s\ sim \ simω_0$)在特定空间区域中重定向能量,以及模拟样本($ω__s\ gg gg gg ggω___________________________________________________________________________________________________________0$)。
This paper presents an analytical framework for the analysis of time-varying metal-based metamaterials. Concretely, we particularize the study to time-modulated metal-air interfaces embedded between two different semi-infinite media that are illuminated by monochromatic plane waves of frequency $ω_0$. The formulation is based on a Floquet-Bloch modal expansion, which takes into account the time periodicity of the structure ($T_s = 2π/ ω_s)$, and integral-equation techniques. It allows to extract the reflection/transmission coefficients as well as to derive nontrivial features about the dynamic response and dispersion curves of time-modulated metal-based screens. In addition, the proposed formulation has an associated analytical equivalent circuit that gives physical insight to the diffraction phenomenon. Similarities and differences between space- and time-modulated metamaterials are discussed via the proposed circuit model. Finally, some analytical results are presented to validate the present framework. A good agreement is observed with numerical computations provided by a self-implemented finite-difference time-domain (FDTD) method. Interestingly, the present results suggest that time-modulated metal-based screens can be used as pulsed sources (when $ω_s \ll ω_0$), beamformers ($ω_s \sim ω_0$) to redirect energy in specific regions of space, and analog samplers ($ω_s \gg ω_0$).