论文标题

来自现实世界数据的车道变化方案的参数化

Parameterisation of lane-change scenarios from real-world data

论文作者

Karunakaran, Dhanoop, Berrio, Julie Stephany, Worrall, Stewart, Nebot, Eduardo

论文摘要

最近的自动驾驶汽车(AV)技术包括机器学习和概率技术,这些技术为传统验证和验证方法带来了重大复杂性。在过去的几年中,研究社区和行业已广泛接受基于方案的测试。由于它直接关注相关的关键道路情况,因此可以减少测试所需的精力。编码现实世界流量参与者的行为对于在基于方案的测试中有效评估正在测试的系统(SUT)至关重要。因此,有必要从现实世界数据中捕获方案参数,这些参数可以在模拟中实际建模。本文的主要重点是确定有意义的参数列表,这些参数可以充分建模现实世界变化场景。使用这些参数,可以构建能够生成一系列具有挑战性的方案以有效地生成有效的AV测试的参数空间。我们使用均方根误差(RMSE)验证我们的方法,以比较使用所提出的参数与现实世界轨迹数据生成的方案。除此之外,我们还证明,在一些场景参数中增加一些干扰可以产生不同的场景,并利用对责任敏感的安全(RSS)度量来衡量场景的风险。

Recent Autonomous Vehicles (AV) technology includes machine learning and probabilistic techniques that add significant complexity to the traditional verification and validation methods. The research community and industry have widely accepted scenario-based testing in the last few years. As it is focused directly on the relevant crucial road situations, it can reduce the effort required in testing. Encoding real-world traffic participants' behaviour is essential to efficiently assess the System Under Test (SUT) in scenario-based testing. So, it is necessary to capture the scenario parameters from the real-world data that can model scenarios realistically in simulation. The primary emphasis of the paper is to identify the list of meaningful parameters that adequately model real-world lane-change scenarios. With these parameters, it is possible to build a parameter space capable of generating a range of challenging scenarios for AV testing efficiently. We validate our approach using Root Mean Square Error(RMSE) to compare the scenarios generated using the proposed parameters against the real-world trajectory data. In addition to that, we demonstrate that adding a slight disturbance to a few scenario parameters can generate different scenarios and utilise Responsibility-Sensitive Safety (RSS) metric to measure the scenarios' risk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源