论文标题
只有尾巴很重要:凸状制度中的平均案例普遍性和鲁棒性
Only Tails Matter: Average-Case Universality and Robustness in the Convex Regime
论文作者
论文摘要
最近开发的优化方法的平均案例分析允许比通常的最坏情况结果进行更细粒度和代表性的收敛分析。作为交换,该分析需要对数据生成过程的更精确的假设,即假定与问题相关的随机矩阵的预期光谱分布(ESD)的知识。这项工作表明,ESD边缘附近的特征值的浓度决定了问题的渐近平均复杂性。与ESD的完整知识相比,有关此浓度的先验信息是一个更扎实的假设。这种近似浓度实际上是最严重的场景融合的粗糙性与限制性的先前平均案例分析之间的中间立场。我们还介绍了广义的Chebyshev方法,该方法在该浓度的假设下渐近最佳,当ESD遵循β分布时,全球最佳。我们将其性能与经典优化算法(例如梯度下降或Nesterov的方案)进行了比较,并且我们表明,在平均情况下,Nesterov的方法在渐近上几乎是最佳的。
The recently developed average-case analysis of optimization methods allows a more fine-grained and representative convergence analysis than usual worst-case results. In exchange, this analysis requires a more precise hypothesis over the data generating process, namely assuming knowledge of the expected spectral distribution (ESD) of the random matrix associated with the problem. This work shows that the concentration of eigenvalues near the edges of the ESD determines a problem's asymptotic average complexity. This a priori information on this concentration is a more grounded assumption than complete knowledge of the ESD. This approximate concentration is effectively a middle ground between the coarseness of the worst-case scenario convergence and the restrictive previous average-case analysis. We also introduce the Generalized Chebyshev method, asymptotically optimal under a hypothesis on this concentration and globally optimal when the ESD follows a Beta distribution. We compare its performance to classical optimization algorithms, such as gradient descent or Nesterov's scheme, and we show that, in the average-case context, Nesterov's method is universally nearly optimal asymptotically.