论文标题

跨小数据集的量子神经网络的高度参数的重要性

Hyperparameter Importance of Quantum Neural Networks Across Small Datasets

论文作者

Moussa, Charles, van Rijn, Jan N., Bäck, Thomas, Dunjko, Vedran

论文摘要

随着受限制的量子计算机逐渐成为现实,寻找有意义的第一应用程序会加剧。在该领域中,较为研究的方法之一是使用一种特殊类型的量子电路(一种所谓的量子神经网络)作为机器学习模型的基础。顾名思义,粗略地说,量子神经网络可以与神经网络发挥相似的作用。但是,特别是针对机器学习环境中的应用程序,关于合适的电路架构或模型超级标准的知识知之甚少。在这项工作中,我们将功能性方差分析框架应用于量子神经网络,以分析哪些超参数对其预测性能最大。我们分析了最常用的量子神经网络架构之一。然后,我们将其应用于OpenML-CC18分类基准的$ 7 $开源数据集,其功能的数量足够小,足以适合量子不到$ 20 $ QUBITS的量子硬件。从功能方差分析获得的超参数的排名中检测到了三个主要的重要性。我们的实验既证实了预期的模式,又揭示了新的见解。例如,在所有数据集上的边际贡献方面,设定学习率是最关键的超级参数,而所使用的纠缠门的特定选择被认为是最不重要的选择。这项工作介绍了研究量子机学习模型的新方法,并为量子模型选择提供了新的见解。

As restricted quantum computers are slowly becoming a reality, the search for meaningful first applications intensifies. In this domain, one of the more investigated approaches is the use of a special type of quantum circuit - a so-called quantum neural network -- to serve as a basis for a machine learning model. Roughly speaking, as the name suggests, a quantum neural network can play a similar role to a neural network. However, specifically for applications in machine learning contexts, very little is known about suitable circuit architectures, or model hyperparameters one should use to achieve good learning performance. In this work, we apply the functional ANOVA framework to quantum neural networks to analyze which of the hyperparameters were most influential for their predictive performance. We analyze one of the most typically used quantum neural network architectures. We then apply this to $7$ open-source datasets from the OpenML-CC18 classification benchmark whose number of features is small enough to fit on quantum hardware with less than $20$ qubits. Three main levels of importance were detected from the ranking of hyperparameters obtained with functional ANOVA. Our experiment both confirmed expected patterns and revealed new insights. For instance, setting well the learning rate is deemed the most critical hyperparameter in terms of marginal contribution on all datasets, whereas the particular choice of entangling gates used is considered the least important except on one dataset. This work introduces new methodologies to study quantum machine learning models and provides new insights toward quantum model selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源