论文标题
GNN-PMB:一个简单但有效的在线3D多对象跟踪器,没有铃铛和哨声
GNN-PMB: A Simple but Effective Online 3D Multi-Object Tracker without Bells and Whistles
论文作者
论文摘要
多对象跟踪(MOT)是现代高级驾驶员辅助系统(ADA)和自动驾驶(AD)系统的关键应用之一。全球最近的邻居(GNN)过滤器是最早的基于矢量的贝叶斯跟踪框架,在汽车行业的大多数最先进的跟踪器中已采用。随机有限集(RFS)理论的发展促进了对MOT问题的数学严格处理,然后提出了基于RFS的贝叶斯过滤器的不同变体。但是,它们在实际ADA和AD应用中的有效性仍然是一个空旷的问题。在本文中,通过对基于规则的启发式跟踪维护和基于规则的基于RFS的基于RFS的基于RFS的贝叶斯过滤器的系统比较研究,可以证明最新的基于RFS的贝叶斯跟踪框架可以优于基于随机向量的贝叶斯跟踪框架。基于RFS的跟踪器,即使用Global最近的邻居(GNN-PMB)的Poisson Multi-Bernoulli滤波器,提出了基于LIDAR的MOT任务。该GNN-PMB跟踪器易于使用,并且可以在Nuscenes数据集上实现竞争结果。具体而言,拟议的GNN-PMB跟踪器优于大多数最先进的激光雷达跟踪器,Lidar和基于摄像机的基于摄像机的跟踪器,在Nuscenes 3D Tracking挑战板上的所有仅LIDAR的跟踪器中排名$ 3^{RD} $。
Multi-object tracking (MOT) is among crucial applications in modern advanced driver assistance systems (ADAS) and autonomous driving (AD) systems. The global nearest neighbor (GNN) filter, as the earliest random vector-based Bayesian tracking framework, has been adopted in most of state-of-the-arts trackers in the automotive industry. The development of random finite set (RFS) theory facilitates a mathematically rigorous treatment of the MOT problem, and different variants of RFS-based Bayesian filters have then been proposed. However, their effectiveness in the real ADAS and AD application is still an open problem. In this paper, it is demonstrated that the latest RFS-based Bayesian tracking framework could be superior to typical random vector-based Bayesian tracking framework via a systematic comparative study of both traditional random vector-based Bayesian filters with rule-based heuristic track maintenance and RFS-based Bayesian filters on the nuScenes validation dataset. An RFS-based tracker, namely Poisson multi-Bernoulli filter using the global nearest neighbor (GNN-PMB), is proposed to LiDAR-based MOT tasks. This GNN-PMB tracker is simple to use, and it achieves competitive results on the nuScenes dataset. Specifically, the proposed GNN-PMB tracker outperforms most state-of-the-art LiDAR-only trackers and LiDAR and camera fusion-based trackers, ranking the $3^{rd}$ among all LiDAR-only trackers on nuScenes 3D tracking challenge leader board at the time of submission.