论文标题
在CTA图像中使用极性变换进行有效的基于深度学习的主动脉分割
Using the Polar Transform for Efficient Deep Learning-Based Aorta Segmentation in CTA Images
论文作者
论文摘要
医疗图像分割通常需要在单个图像上分割多个椭圆对象。这包括在其他任务中分割轴向CTA切片中主动脉等容器。在本文中,我们提出了一种一般方法,用于改善这些任务中神经网络的语义分割性能,并验证我们对主动脉分割任务的方法。我们使用两个神经网络的级联反应,其中一个基于U-NET体系结构执行粗糙的分割,另一个对输入的极性图像转换执行了最终分割。粗糙分割的连接组件分析用于构建极性变换,并且使用磁滞阈值融合了对同一图像的多个变换的预测。我们表明,这种方法可以改善主动脉分割性能,而无需复杂的神经网络体系结构。此外,我们表明我们的方法可以提高稳健性和像素级的回忆,同时根据最新的状态实现细分性能。
Medical image segmentation often requires segmenting multiple elliptical objects on a single image. This includes, among other tasks, segmenting vessels such as the aorta in axial CTA slices. In this paper, we present a general approach to improving the semantic segmentation performance of neural networks in these tasks and validate our approach on the task of aorta segmentation. We use a cascade of two neural networks, where one performs a rough segmentation based on the U-Net architecture and the other performs the final segmentation on polar image transformations of the input. Connected component analysis of the rough segmentation is used to construct the polar transformations, and predictions on multiple transformations of the same image are fused using hysteresis thresholding. We show that this method improves aorta segmentation performance without requiring complex neural network architectures. In addition, we show that our approach improves robustness and pixel-level recall while achieving segmentation performance in line with the state of the art.