论文标题

某些特定正交多项式的结构关系

A structure relation for some specific orthogonal polynomials

论文作者

Mbouna, D.

论文摘要

通过表征所有正交多项式序列$(p_n)_ {n \ geq 0} $,为哪个$$(ax+b)(\ triangle +2 \,\ mathrm {i})p_n(x(s-1/2)) n = 0,1,2,\ dots,$$,其中$ \,\ mathrm {i} $是身份操作员,$ x $定义了$ q $ -quadratic lattice,$ \ triangle f(s)= f(s)= f(s+1)-f(s)-f(s)-f(S)$ $(b_n)_ {n \ geq0} $和$(c_n)_ {n \ geq0} $是复数的序列,我们为正交多发词的某些特定家族得出了一些新的结构关系。

By characterizing all orthogonal polynomials sequences $(P_n)_{n\geq 0}$ for which $$ (ax+b)(\triangle +2\,\mathrm{I})P_n(x(s-1/2))=(a_n x+b_n)P_n(x)+c_n P_{n-1}(x),\quad n=0,1,2,\dots, $$ where $\,\mathrm{I}$ is the identity operator, $x$ defines a $q$-quadratic lattice, $\triangle f(s)=f(s+1)-f(s)$, and $(a_n)_{n\geq0}$, $(b_n)_{n\geq0}$ and $(c_n)_{n\geq0}$ are sequences of complex numbers, we derive some new structure relations for some specific families of orthogonal polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源