论文标题
4dMartínezAlonso-Shabat方程的非亚伯覆盖和新的递归操作员
Non-Abelian covering and new recursion operators for the 4D Martínez Alonso-Shabat equation
论文作者
论文摘要
我们为4dMartínezAlonso -Shabat方程的(非局部)对称的(非局部)对称的新递归操作员提供了[I.S.Krasil'shchik,p.vojčák,在4dMartínezAlonso-Shabat方程的非本地对称性代数上。 Geom J.和物理。 163,(2021),104122,(Arxiv:2008.10281v1)]。为此,我们使用LAX对构建了与两个不可移动参数的lax对构建有关方程的覆盖。
We present new recursion operators for (shadows of nonlocal) symmetries of the 4D Martínez Alonso-Shabat equation $u_{ty} = u_z u_{xy} - u_y u_{xz}$, and we show that their actions can produce new symmetries which are not contained in the Lie algebra of nonlocal symmetries presented in [I.S.Krasil'shchik, P.Vojčák, On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation. J. of Geom. and Phys. 163, (2021), 104122, (arXiv:2008.10281v1)]. To this end, we construct a non-Abelian covering of the equation in question using the Lax pair with two non-removable parameters.