论文标题
第二部分:witten效果和$ \ mathbb {z} $ - 轴向角度的分类$θ=nπ$
Part II: Witten effect and $\mathbb{Z}$-classification of axion angle $θ=n π$
论文作者
论文摘要
三维拓扑绝缘子的非平凡的第三同型类别导致量化的,磁性系数或轴向角度$θ=nπ$,并带有$ n \ in \ mathbb {z} $。在第一部分中,我们开发了用于计算交错的对称性调节器$κ__{af,j} $的工具,并在非亚伯利亚的Wilson Loops中,在动量空间中的Berry连接,它们清楚地区分了磁性电动琐碎的($ n = 0 $)和非琐事($ n = 2s $)的topological topological installine installine installine installine installine installine installine installine systall。在这项工作中,我们通过使用磁性的,狄拉克单托尔(Dirac Monopoles)进行思想实验,执行$ \ mathbb {z} $ - 对真实空间,拓扑响应或$θ$的分类。我们通过计算单孔或维滕效应的电荷来证明非磁性和磁性绝缘体。我们表明,无论存在无骨表面状态和角落状态如何,第一和高阶拓扑绝缘子都可以表现出量化的磁电响应。特别注意八极高阶拓扑绝缘子的响应,该绝缘子最初被预测是磁性电琐的。 Fermion零模型,$ \ Mathcal {cp} $和风味对称性的重要作用是严格解决的。我们的工作概述了一个统一的理论框架,用于解决DC拓扑响应和拓扑量子相变,无法通过基于对称性的分类方案可靠地预测。
The non-trivial third homotopy class of three-dimensional topological insulators leads to quantized, magneto-electric coefficient or axion angle $θ= n π$, with $n \in \mathbb{Z}$. In Part I, we developed tools for computing $n$ from a staggered symmetry-indicator $κ_{AF,j}$ and Wilson loops of non-Abelian, Berry connection in momentum-space, which clearly distinguished between magneto-electrically trivial ($n=0$), and non-trivial ($n=2s$) topological crystalline insulators. In this work, we perform $\mathbb{Z}$-classification of real-space, topological response or $θ$ by carrying out thought experiments with magnetic, Dirac monopoles. We demonstrate this for non-magnetic and magnetic topological insulators by computing induced electric charge on monopoles or Witten effect. We show that both first- and higher- order topological insulators can exhibit quantized, magneto-electric response, irrespective of the presence of gapless surface-states, and corner-states. Special attention is paid to the response of octupolar higher-order topological insulator, which was originally predicted to be magneto-electrically trivial. The important roles of fermion zero-modes, $\mathcal{CP}$, and flavor symmetries are critically addressed. Our work outlines a unified theoretical framework for addressing dc topological response and topological quantum phase transitions, which cannot be reliably predicted by symmetry-based classification scheme.