论文标题
何时在本地凸出空间eberlein grothendieck?
When is a locally convex space Eberlein-Grothendieck?
论文作者
论文摘要
在本文中,我们对这些本地凸空间$ e $进行系统研究,以使$(e,w)$是(线性)eberlein-grothendieck,其中$ w $是$ e $的弱拓扑。 令$ c_ {k}(x)$为tychonoff空间上连续实现功能的空间,并带有紧凑型开放式拓扑。我们论文的主要结果是:(1)对于首次计算空间$ x $(尤其是对于Metrizable $ x $),本地凸出空间$(c_ {k}(x),w),w)$是eberlein-grothendieck,并且仅当$ x $都是$σ$ -compact和compart; (2)$(c_ {k}(x),w)$是线性的eberlein-grothendieck,并且仅当$ x $紧凑时。 我们表征了$ e $,以便$(e,w)$是其他几个重要类别的本地凸空间$ e $的eberlein-grothendieck。 另外,我们表明,$(e,w)$的$ e $类是线性的eberlein-grothendieck,可以保留线性连续的商。提供了各种说明示例。
In this paper we undertake a systematic study of those locally convex spaces $E$ such that $(E, w)$ is (linearly) Eberlein-Grothendieck, where $w$ is the weak topology of $E$. Let $C_{k}(X)$ be the space of continuous real-valued functions on a Tychonoff space $X$ endowed with the compact-open topology. The main results of our paper are: (1) For a first-countable space $X$ (in particular, for a metrizable $X$) the locally convex space $(C_{k}(X), w)$ is Eberlein-Grothendieck if and only if $X$ is both $σ$-compact and locally compact; (2) $(C_{k}(X), w)$ is linearly Eberlein-Grothendieck if and only if $X$ is compact. We characterize $E$ such that $(E, w)$ is linearly Eberlein-Grothendieck for several other important classes of locally convex spaces $E$. Also, we show that the class of $E$ for which $(E, w)$ is linearly Eberlein-Grothendieck preserves linear continuous quotients. Various illustrating examples are provided.