论文标题

进化算法的量子增强选择运算符

Quantum-Enhanced Selection Operators for Evolutionary Algorithms

论文作者

Von Dollen, David, Yarkoni, Sheir, Weimer, Daniel, Neukart, Florian, Bäck, Thomas

论文摘要

遗传算法具有独特的属性,当应用于黑匣子优化时很有用。使用选择,交叉和突变操作员,可以在无需计算梯度的情况下获得候选溶液。在这项工作中,我们研究了从遗传算法的选择机理中使用量子增强的算子获得的结果。我们的方法将选择过程构架为最小化二进制二次模型的方法,我们使用该模型编码适合度和人群成员之间的距离,并且我们利用量子退火系统来为选择机制采样低能解决方案。我们对各种黑盒目标函数(包括OneMax函数)以及来自IOHProfiler库的函数进行黑盒优化的函数对这些量子增强的算法进行基准测试针对经典算法的这些量子增强算法。与OneMax功能上的经典相比,我们观察到平均世代相传的性能增长,以收敛到量子增强的精英选择运算符。我们还发现,具有非专业选择的量子增强选择算子在IOHProfiler库中具有适应性扰动的功能上的基准优于基准。此外,我们发现在精英选择的情况下,量子增强的操作员在不同程度的虚拟变量和中立性的函数上优于经典基准。

Genetic algorithms have unique properties which are useful when applied to black box optimization. Using selection, crossover, and mutation operators, candidate solutions may be obtained without the need to calculate a gradient. In this work, we study results obtained from using quantum-enhanced operators within the selection mechanism of a genetic algorithm. Our approach frames the selection process as a minimization of a binary quadratic model with which we encode fitness and distance between members of a population, and we leverage a quantum annealing system to sample low energy solutions for the selection mechanism. We benchmark these quantum-enhanced algorithms against classical algorithms over various black-box objective functions, including the OneMax function, and functions from the IOHProfiler library for black-box optimization. We observe a performance gain in average number of generations to convergence for the quantum-enhanced elitist selection operator in comparison to classical on the OneMax function. We also find that the quantum-enhanced selection operator with non-elitist selection outperform benchmarks on functions with fitness perturbation from the IOHProfiler library. Additionally, we find that in the case of elitist selection, the quantum-enhanced operators outperform classical benchmarks on functions with varying degrees of dummy variables and neutrality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源