论文标题

Fano品种的核心性

Coregularity of Fano varieties

论文作者

Moraga, Joaquín

论文摘要

Fano品种的规律性,用$ {\ rm reg}(x)$表示,是$ x $上的log calabi-yau结构的双重复合体的最大维度。核心性定义为\ [{\ rm coreg}(x):= \ dim x- {\ rm reg}(x)-1。 \]核心性是规律性的互补维度。我们预计,Fano品种的核心性在很大程度上是$ x $的几何形状。在本说明中,我们回顾了Fano品种的历史,举例说明,调查一些重要的定理,引入核心性,并提出有关Fano品种的不变的一些问题。

The regularity of a Fano variety, denoted by ${\rm reg}(X)$, is the largest dimension of the dual complex of a log Calabi--Yau structure on $X$. The coregularity is defined to be \[ {\rm coreg}(X):= \dim X - {\rm reg}(X)-1. \] The coregularity is the complementary dimension of the regularity. We expect that the coregularity of a Fano variety governs, to a large extent, the geometry of $X$. In this note, we review the history of Fano varieties, give some examples, survey some important theorems, introduce the coregularity, and propose several problems regarding this invariant of Fano varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源