论文标题

基于模板的零击意向识别方法

Template-based Approach to Zero-shot Intent Recognition

论文作者

Lamanov, Dmitry, Burnyshev, Pavel, Artemova, Ekaterina, Malykh, Valentin, Bout, Andrey, Piontkovskaya, Irina

论文摘要

转移学习技术和预先培训的最新进展大型上下文编码器在包括对话助理在内的现实应用程序中促进了创新。意图识别的实际需求需要有效的数据使用,并能够不断更新支持意图,采用新的意图并放弃过时的意图。尤其是,对模型的广泛零射击范式对所见意图进行了训练,并在可见的和看不见的意图上进行了测试,它具有新的重要性。在本文中,我们探讨了通用的零弹性设置,以识别意图。遵循零击文本分类的最佳实践,我们使用句子对建模方法对待任务。对于看不见的意图,使用意图标签和用户话语,而无需访问外部资源(例如知识库),我们的表现优于先前的最先进的F1量化,最多可达16 \%。进一步的增强包括意图标签的词汇化,可提高性能高达7 \%。通过使用从其他句子对任务(例如自然语言推论)转移的任务,我们会获得其他改进。

The recent advances in transfer learning techniques and pre-training of large contextualized encoders foster innovation in real-life applications, including dialog assistants. Practical needs of intent recognition require effective data usage and the ability to constantly update supported intents, adopting new ones, and abandoning outdated ones. In particular, the generalized zero-shot paradigm, in which the model is trained on the seen intents and tested on both seen and unseen intents, is taking on new importance. In this paper, we explore the generalized zero-shot setup for intent recognition. Following best practices for zero-shot text classification, we treat the task with a sentence pair modeling approach. We outperform previous state-of-the-art f1-measure by up to 16\% for unseen intents, using intent labels and user utterances and without accessing external sources (such as knowledge bases). Further enhancement includes lexicalization of intent labels, which improves performance by up to 7\%. By using task transferring from other sentence pair tasks, such as Natural Language Inference, we gain additional improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源