论文标题
旋转的测试主体绕着Kerr黑洞绕:比较圆形赤道轨道的自旋补充条件
Spinning test body orbiting around a Kerr black hole: Comparing Spin Supplementary Conditions for Circular Equatorial Orbits
论文作者
论文摘要
Mathisson-Papapetou-Dixon(MPD)方程可以提供旋转测试体在弯曲时空移动的世界线,当它的质心(即其质量中心)通过自旋补充条件(SSC)固定时。在本研究中,我们在最近发表的工作中继续探索不同质心之间的转变[Phys。 Rev. D 104,024042(2021)],因此,对于Schwarzschild时空的纸张I,通过检查KERR SSC在Kerr SSC的变化下检查圆形赤道轨道的频率。特别是,当这些频率以自旋度量的功率系列扩展,并且身体的质心从Mathisson-Pirani或Mathisson-pirani或Ohashi-Kyrian-Kyrian-Semerak框架转移到Tulczyjew-Dixon One时,我们会以术中和逆行轨道频率的术语来检查收敛性。由于在论文I中,我们已经看到最内向的稳定圆形轨道(ISCO)在此比较过程中占有特殊的位置,因此我们在这项工作中严格关注它们。我们介绍了一种新的为任何SSC寻找ISCO的方法,并将其用于Tulczyjew-Dixon和Mathisson-Pirani形式主义。由于技术困难不允许纸张I分析治疗,因此我们诉诸于ISCO案例之间的收敛性。我们的结论(如论文I中)是,SSC之间的频率的功率系列似乎存在融合,当考虑到适当的偏移时,这将得到改进,但是由于在旋转体近似中,我们仅考虑了扩展的身体的前两个较低的多孔,并且忽略了所有较高的较高的较高的,因此这种收敛性存在限制。
The worldline of a spinning test body moving in curved spacetime can be provided by the Mathisson-Papapetrou-Dixon (MPD) equations when its centroid, i.e. its center of mass, is fixed by a Spin Supplementary Condition (SSC). In the present study, we continue the exploration of shifts between different centroids started in a recently published work [ Phys. Rev. D 104, 024042 (2021)], henceforth Paper I, for the Schwarzschild spacetime, by examining the frequencies of circular equatorial orbits under a change of the SSC in the Kerr spacetime. In particular, we examine the convergence in the terms of the prograde and retrograde orbital frequencies, when these frequencies are expanded in power series of the spin measure and the centroid of the body is shifted from the Mathisson-Pirani or the Ohashi-Kyrian-Semerak frame to the Tulczyjew-Dixon one. Since in Paper I, we have seen that the innermost stable circular orbits (ISCOs) hold a special place in this comparison process, we focus on them rigorously in this work. We introduce a novel method of finding ISCOs for any SSC and employ it for the Tulczyjew-Dixon and the Mathisson-Pirani formalisms. We resort to numerical investigation of the convergence between the SSCs for the ISCO case, due to technical difficulties not allowing Paper's I analytical treatment. Our conclusion, as in Paper I, is that there appears to be a convergence in the power series of the frequencies between the SSCs, which is improved when the proper shifts are taken into account, but there exists a limit in this convergence due to the fact that in the spinning body approximation we consider only the first two lower multipoles of the extended body and ignore all the higher ones.