论文标题
模块化体系结构确定性生成图形状态
Modular architectures to deterministically generate graph states
论文作者
论文摘要
图状态是一个稳定态的家族,可以针对光子量子计算和量子通信的各种应用定制。在本文中,我们提出了一个基于量子点发射器的模块化设计,该量子点发射器与波导和光纤延迟线相连,以确定性地生成N维聚类状态和其他有用的图形状态,例如树状态和中继器状态。与以前的建议不同,我们的设计不需要在量子点上两倍的门,最多只需要一个光学开关,从而最大程度地减少了这些要求通常提出的挑战。此外,我们讨论了设计的误差模型,并演示了易于故障的量子内存,在Raussendorf-Harrington-Goyal(RHG)晶格上的3D图状态下,误差阈值为0.53%。我们还基于渗透理论,基于耐断层RHG状态的可更正损失提供了基本的上限,该理论分别取决于状态是从简单的立方集群状态直接生成还是获得的,为1.24 dB还是0.24 dB。
Graph states are a family of stabilizer states which can be tailored towards various applications in photonic quantum computing and quantum communication. In this paper, we present a modular design based on quantum dot emitters coupled to a waveguide and optical fiber delay lines to deterministically generate N-dimensional cluster states and other useful graph states such as tree states and repeater states. Unlike previous proposals, our design requires no two-qubit gates on quantum dots and at most one optical switch, thereby, minimizing challenges usually posed by these requirements. Furthermore, we discuss the error model for our design and demonstrate a fault-tolerant quantum memory with an error threshold of 0.53% in the case of a 3d graph state on a Raussendorf-Harrington-Goyal (RHG) lattice. We also provide a fundamental upper bound on the correctable loss in the fault-tolerant RHG state based on the percolation theory, which is 1.24 dB or 0.24 dB depending on whether the state is directly generated or obtained from a simple cubic cluster state, respectively.