论文标题
一种新颖的算法,用于精确的凹壳提取
A Novel Algorithm for Exact Concave Hull Extraction
论文作者
论文摘要
从自主驱动中的对象检测到细胞生物学中细胞形态的分析,需要在广泛的应用中提取区域提取。存在两种主要方法:凸赫尔提取,对于这些方法存在,并且存在精确有效的算法和凹面船体,它们更擅长捕获现实世界的形状,但没有单个解决方案。尤其是在均匀网格的背景下,凹面船体算法在很大程度上是近似的,牺牲区域的完整性,以实现空间和时间效率。在这项研究中,我们提出了一种新颖的算法,可以提供最大的(即像素完美)分辨率的顶点最小化的凹面壳,并且对于速度效率折衷方案而言是可调的。我们的方法在多个下游应用程序中提供了优势,包括数据压缩,检索,可视化和分析。为了证明我们方法的实际实用性,我们专注于图像压缩。我们通过对单个图像中不同区域的上下文依赖性压缩(熵编码噪声和预测性编码的结构化区域编码)表现出显着改进。我们表明,这些改进范围从生物医学图像到自然图像。除了图像压缩之外,我们的算法还可以更广泛地应用于为数据检索,可视化和分析的广泛实用应用。
Region extraction is necessary in a wide range of applications, from object detection in autonomous driving to analysis of subcellular morphology in cell biology. There exist two main approaches: convex hull extraction, for which exact and efficient algorithms exist and concave hulls, which are better at capturing real-world shapes but do not have a single solution. Especially in the context of a uniform grid, concave hull algorithms are largely approximate, sacrificing region integrity for spatial and temporal efficiency. In this study, we present a novel algorithm that can provide vertex-minimized concave hulls with maximal (i.e. pixel-perfect) resolution and is tunable for speed-efficiency tradeoffs. Our method provides advantages in multiple downstream applications including data compression, retrieval, visualization, and analysis. To demonstrate the practical utility of our approach, we focus on image compression. We demonstrate significant improvements through context-dependent compression on disparate regions within a single image (entropy encoding for noisy and predictive encoding for the structured regions). We show that these improvements range from biomedical images to natural images. Beyond image compression, our algorithm can be applied more broadly to aid in a wide range of practical applications for data retrieval, visualization, and analysis.