论文标题
重新思考外科手术仪器分割:您需要的所有背景图像
Rethinking Surgical Instrument Segmentation: A Background Image Can Be All You Need
论文作者
论文摘要
数据多样性和数量对于培训深度学习模型的成功至关重要,而在医学成像领域,数据收集和注释的难度和成本尤其巨大。特别是在机器人手术中,数据稀缺和失衡严重影响了模型的准确性,并限制了基于深度学习的手术应用(例如手术仪器分割)的设计和部署。考虑到这一点,我们重新考虑了手术仪器分割任务,并提出了一种一对多的数据生成解决方案,从机器人手术中摆脱了复杂且昂贵的数据收集过程和注释。在我们的方法中,我们仅利用单个手术背景组织图像和一些开源仪器图像作为种子图像,并应用多种增强和混合技术来合成大量图像变化。此外,我们还引入了训练期间链式的增强混合,以进一步增强数据多样性。在Endovis-2018和Edsovis-2017手术场景细分的实际数据集中评估了所提出的方法。我们的经验分析表明,如果没有高度的数据收集和注释成本,我们就可以实现体面的手术仪器分割性能。此外,我们还观察到我们的方法可以处理部署领域中的新工具预测。我们希望我们的鼓舞人心的结果能够鼓励研究人员强调以数据为中心的方法,以克服除数据短缺(例如类不平衡,域适应性和增量学习)之外的深度学习限制。我们的代码可在https://github.com/lofrienger/single_surgicalscene_for_segmentation上找到。
Data diversity and volume are crucial to the success of training deep learning models, while in the medical imaging field, the difficulty and cost of data collection and annotation are especially huge. Specifically in robotic surgery, data scarcity and imbalance have heavily affected the model accuracy and limited the design and deployment of deep learning-based surgical applications such as surgical instrument segmentation. Considering this, we rethink the surgical instrument segmentation task and propose a one-to-many data generation solution that gets rid of the complicated and expensive process of data collection and annotation from robotic surgery. In our method, we only utilize a single surgical background tissue image and a few open-source instrument images as the seed images and apply multiple augmentations and blending techniques to synthesize amounts of image variations. In addition, we also introduce the chained augmentation mixing during training to further enhance the data diversities. The proposed approach is evaluated on the real datasets of the EndoVis-2018 and EndoVis-2017 surgical scene segmentation. Our empirical analysis suggests that without the high cost of data collection and annotation, we can achieve decent surgical instrument segmentation performance. Moreover, we also observe that our method can deal with novel instrument prediction in the deployment domain. We hope our inspiring results will encourage researchers to emphasize data-centric methods to overcome demanding deep learning limitations besides data shortage, such as class imbalance, domain adaptation, and incremental learning. Our code is available at https://github.com/lofrienger/Single_SurgicalScene_For_Segmentation.