论文标题
圆锥之间的纠缠一夫一妻制
Monogamy of entanglement between cones
论文作者
论文摘要
当事方之间共享的可分离量子状态可以对称地扩展到party $ a $ and party $ b_1,\ ldots,b_k $的量子状态,每个$ k \ in \ mathbf {n} $。量子状态不可分开,即纠缠,没有此属性。这种现象被称为“纠缠一夫一妻制”。我们表明,一夫一妻制不仅是量子理论的特征,而且还表征了一对凸锥$ \ Mathsf {C} _a $和$ \ Mathsf {C} _b $的最小张量产品的最小张量。 \ mathsf {c} _b $恰恰是张紧器,可以对称地扩展到最大张量产品$ \ Mathsf {c} _a \ otimes _ {\ max}} _ {\ max} \ otimes _ {\ max} \ mathsf {c} $ k \ in \ mathbf {n} $。同等地,两个锥体的最小张量产品是$ k $伸缩张量的嵌套集的交点。当最小张量产品$ \ mathsf {c} _a \ otimes _ {\ min} \ mathsf {c} _b $与某些有限$ k $的$ k $ - extendible Tensors集合时,这是一个自然的问题。我们证明,对于每个锥体$ \ mathsf {c} _a $,仅当$ \ mathsf {c} _b $是一个多面体锥,是一个由简单产品给出的基础,这是普遍的情况。我们的证明利用了简单产品的新表征,直到我们认为具有独立兴趣的仿射等效性。
A separable quantum state shared between parties $A$ and $B$ can be symmetrically extended to a quantum state shared between party $A$ and parties $B_1,\ldots ,B_k$ for every $k\in\mathbf{N}$. Quantum states that are not separable, i.e., entangled, do not have this property. This phenomenon is known as "monogamy of entanglement". We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones $\mathsf{C}_A$ and $\mathsf{C}_B$: The elements of the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ are precisely the tensors that can be symmetrically extended to elements in the maximal tensor product $\mathsf{C}_A\otimes_{\max} \mathsf{C}^{\otimes_{\max} k}_B$ for every $k\in\mathbf{N}$. Equivalently, the minimal tensor product of two cones is the intersection of the nested sets of $k$-extendible tensors. It is a natural question when the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ coincides with the set of $k$-extendible tensors for some finite $k$. We show that this is universally the case for every cone $\mathsf{C}_A$ if and only if $\mathsf{C}_B$ is a polyhedral cone with a base given by a product of simplices. Our proof makes use of a new characterization of products of simplices up to affine equivalence that we believe is of independent interest.