论文标题
Fracton相变的叶序参数
Foliated order parameter in a fracton phase transition
论文作者
论文摘要
找到适合表征量子相变的指标在理解物质的不同阶段中起重要作用。对于分裂阶段,拓扑和分数化的组合导致其他已知量子阶段看不到的外来特征尤其重要。在本文中,我们通过在存在非线性扰动的情况下研究X-Cube模型中的相位过渡来考虑上述问题。利用对基态保真度的分析并确定全局纠缠中的不连续性,我们表明存在着从具有高度纠缠性质到磁化相的I型Fracton相的一阶量子相变。因此,我们得出的结论是,作为对基态总量子相关的度量,全球纠缠可以很好地捕获分裂相变的某些特征。然后,我们以叶状操作员的形式引入了一个非本地阶参数,该参数可以表征上述相变。我们特别表明,这样的阶参数具有几何特性,可捕获具有拓扑阶段的分裂阶段的特定差异。我们的研究专门基于众所周知的双重映射到经典的纸质伊辛模型,在该模型中,它显示了这种二元性在研究不同量子阶段的重要性。
Finding suitable indicators for characterizing quantum phase transitions plays an important role in understanding different phases of matter. It is especially important for fracton phases where a combination of topology and fractionalization leads to exotic features not seen in other known quantum phases. In this paper, we consider the above problem by studying phase transition in the X-cube model in the presence of a non-linear perturbation. Using an analysis of the ground state fidelity and identifying a discontinuity in the global entanglement, we show there is a first order quantum phase transition from a type I fracton phase with a highly entangled nature to a magnetized phase. Accordingly, we conclude that the global entanglement, as a measure of the total quantum correlations in the ground state, can well capture certain features of fracton phase transitions. Then, we introduce a non-local order parameter in the form of a foliated operator which can characterize the above phase transition. We particularly show that such an order parameter has a geometric nature which captures specific differences of fracton phases with topological phases. Our study is specifically based on a well-known dual mapping to the classical plaquette Ising model where it shows the importance of such dualities in studying different quantum phases of matter.