论文标题
量子逆半群
Quantum Inverse Semigroups
论文作者
论文摘要
在这项工作中,引入了量子反向半群的概念,作为反向半群的线性化概括。除了一个反向半群的代数(这是量子反向半群的自然示例)之外,这种新结构的其他几个示例也在不同的情况下呈现,这些示例与Hopf代数,弱Hopf代数,部分动作和HOPF类别有关。最后,在交换基础代数上定义了局部两种序列的普遍概念,从而产生了与Hopf代数相关的量子逆半群的新示例,而逆半群也与Hopf代数相关的含义是逆半群与类别型相关。
In this work, the notion of a quantum inverse semigroup is introduced as a linearized generalization of inverse semigroups. Beyond the algebra of an inverse semigroup, which is the natural example of a quantum inverse semigroup, several other examples of this new structure are presented in different contexts, those are related to Hopf algebras, weak Hopf algebras, partial actions and Hopf categories. Finally, a generalized notion of local bisections are defined for commutative Hopf algebroids over a commutative base algebra giving rise to new examples of quantum inverse semigroups associated to Hopf algebroids in the same sense that inverse semigroups are related to groupoids.