论文标题

关于紧凑型圆环圆形的编纂,一个全体形状分布

On codimension one holomorphic distributions on compact toric orbifolds

论文作者

Peña, Miguel Rodríguez

论文摘要

确定了一个通用的condimension一个圆形分布在紧凑的孢子圆孔上的奇异性的数量。结果,我们将定期分布的分布在有理正常的滚动和加权射击空间上进行分类。在某些条件下,我们还证明,在感谢您的三叶圆环上的一个奇异的一个圆形叶子的奇异集接收了Conigimension二的至少一个不可约的组成部分,并且我们给出了一个darboux-jouanolou类型的可集成性定理,用于编织一个Holomorphic foliations。我们用几个示例来说明结果。

The number of singularities, counted with multiplicity, of a generic codimension one holomorphic distribution on a compact toric orbifold is determined. As a consequence, we give the classification of regular distributions on rational normal scrolls and weighted projective spaces. Under certain conditions, we also prove that the singular set of a codimension one holomorphic foliation on a toric orbifold admits at least one irreducible component of codimension two, and we give a Darboux-Jouanolou type integrability theorem for codimension one holomorphic foliations. We illustrate our results with several examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源