论文标题

时间关注单元:迈向有效的时空预测学习

Temporal Attention Unit: Towards Efficient Spatiotemporal Predictive Learning

论文作者

Tan, Cheng, Gao, Zhangyang, Wu, Lirong, Xu, Yongjie, Xia, Jun, Li, Siyuan, Li, Stan Z.

论文摘要

时空预测学习旨在通过从历史框架中学习来产生未来的框架。在本文中,我们研究了现有的方法,并提出了时空预测学习的一般框架,其中空间编码器和解码器捕获框内特征和中间时间模块捕获框架间相关性。尽管主流方法采用经常性单元来捕获长期的时间依赖性,但由于无法平行的架构,它们的计算效率低。为了使时间模块并行,我们提出了时间注意单元(TAU),该单元将时间关注分解为框内统计的关注和框架间动力学注意力。此外,虽然平方误差损失侧重于框架内错误,但我们引入了一种新型的差异差异正则化,以考虑框架间的变化。广泛的实验表明,所提出的方法使派生模型能够在各种时空预测基准上实现竞争性能。

Spatiotemporal predictive learning aims to generate future frames by learning from historical frames. In this paper, we investigate existing methods and present a general framework of spatiotemporal predictive learning, in which the spatial encoder and decoder capture intra-frame features and the middle temporal module catches inter-frame correlations. While the mainstream methods employ recurrent units to capture long-term temporal dependencies, they suffer from low computational efficiency due to their unparallelizable architectures. To parallelize the temporal module, we propose the Temporal Attention Unit (TAU), which decomposes the temporal attention into intra-frame statical attention and inter-frame dynamical attention. Moreover, while the mean squared error loss focuses on intra-frame errors, we introduce a novel differential divergence regularization to take inter-frame variations into account. Extensive experiments demonstrate that the proposed method enables the derived model to achieve competitive performance on various spatiotemporal prediction benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源