论文标题

MPCLAN:具有隐私意识计算的协议套件

MPClan: Protocol Suite for Privacy-Conscious Computations

论文作者

Koti, Nishat, Patil, Shravani, Patra, Arpita, Suresh, Ajith

论文摘要

收集的数据量不断增长,其提供更好服务的分析正在引起人们对数字隐私的担忧。为了解决隐私问题并提供实用的解决方案,文献依赖于安全的多方计算。但是,最近的研究主要集中在多达四个政党的小党诚实多数设置上,并指出了效率问题。在这项工作中,我们扩展了在诚实多数的环境中支持更多参与者的策略,并在中心阶段效率。 在预处理范式中施放,我们的半honest协议改善了Damgård和Nielson十年最先进的协议的在线复杂性(Crypto'07)。除了提高在线沟通成本外,我们还可以在在线阶段关闭几乎一半的聚会,从而节省了该系统的运营成本高达50%。我们恶意安全的协议也享有类似的好处,除了一次性验证外,只需要一半的当事方。 为了展示设计协议的实用性,我们使用原型实现进行了基准的流行应用程序,例如深神经网络,图形神经网络,基因组序列匹配以及生物识别匹配。我们改进的协议有助于在先前的工作中节省高达60-80%的货币成本。

The growing volumes of data being collected and its analysis to provide better services are creating worries about digital privacy. To address privacy concerns and give practical solutions, the literature has relied on secure multiparty computation. However, recent research has mostly focused on the small-party honest-majority setting of up to four parties, noting efficiency concerns. In this work, we extend the strategies to support a larger number of participants in an honest-majority setting with efficiency at the center stage. Cast in the preprocessing paradigm, our semi-honest protocol improves the online complexity of the decade-old state-of-the-art protocol of Damgård and Nielson (CRYPTO'07). In addition to having an improved online communication cost, we can shut down almost half of the parties in the online phase, thereby saving up to 50% in the system's operational costs. Our maliciously secure protocol also enjoys similar benefits and requires only half of the parties, except for one-time verification, towards the end. To showcase the practicality of the designed protocols, we benchmark popular applications such as deep neural networks, graph neural networks, genome sequence matching, and biometric matching using prototype implementations. Our improved protocols aid in bringing up to 60-80% savings in monetary cost over prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源