论文标题
通过虚拟过程嵌入在连续空间中的贝叶斯优化
Bayesian Optimization in Continuous Spaces via Virtual Process Embeddings
论文作者
论文摘要
自动化学合成,材料制造和光谱物理测量通常会带来过程轨迹优化的挑战,即发现温度,电场或压力的时间依赖性,从而带来最佳性质。由于相应向量的高维度,这些问题不直接适合贝叶斯优化(BO)。在这里,我们提出了一种基于生成统计模型的组合,特别是变化自动编码器和贝叶斯优化的方法。在这里,基于现场,领域直觉或人类专业知识的最佳实践形成了一组潜在的轨迹。变性自动编码器用于编码这样生成的轨迹作为潜在向量,还允许通过潜在空间采样生成轨迹。以这种方式,该过程的贝叶斯优化在系统的潜在空间中实现,将问题降低到低维度。在这里,我们将这种方法应用于铁电晶格模型,并证明这种方法允许发现最大化系统中卷曲的场轨迹。对相应的极化和卷曲分布的分析允许解码相关的物理机制。
Automated chemical synthesis, materials fabrication, and spectroscopic physical measurements often bring forth the challenge of process trajectory optimization, i.e., discovering the time dependence of temperature, electric field, or pressure that gives rise to optimal properties. Due to the high dimensionality of the corresponding vectors, these problems are not directly amenable to Bayesian Optimization (BO). Here we propose an approach based on the combination of the generative statistical models, specifically variational autoencoders, and Bayesian optimization. Here, the set of potential trajectories is formed based on best practices in the field, domain intuition, or human expertise. The variational autoencoder is used to encode the thus generated trajectories as a latent vector, and also allows for the generation of trajectories via sampling from latent space. In this manner, Bayesian Optimization of the process is realized in the latent space of the system, reducing the problem to a low-dimensional one. Here we apply this approach to a ferroelectric lattice model and demonstrate that this approach allows discovering the field trajectories that maximize curl in the system. The analysis of the corresponding polarization and curl distributions allows the relevant physical mechanisms to be decoded.