论文标题
XMD:基于宽敞的硬件 - 托运移动恶意软件检测器,以增强端点检测
XMD: An Expansive Hardware-telemetry based Mobile Malware Detector to enhance Endpoint Detection
论文作者
论文摘要
基于硬件的恶意软件探测器(HMD)在检测恶意工作负载方面表现出了承诺。但是,当前的HMD仅关注系统芯片(SOC)的CPU核心,因此不利用硬件遥测的全部潜力。在本文中,我们提出了XMD,这是一种HMD,它使用了从SOC的不同子系统中提取的一组广泛的遥测通道。 XMD利用了CPU核心遥测的线程级分析功率以及非核心遥测通道的全球分析功率,以比目前使用的硬件性能计数器(HPC)检测器实现明显更好的检测性能。我们利用多种假设的概念在分析上证明,添加非核心遥测通道可提高良性和恶意软件类别的可分离性,从而导致性能提高。我们使用从商品Android操作系统(OS)的移动设备上收集的硬件遥测训练和评估XMD。 XMD比当前使用的基于HPC的检测器提高了32.91%的分布测试数据。 XMD在同一组恶意软件样本上,XMD达到了86.54%的最佳检测性能,假期为2.9%,伪正率为2.9%,在Virustotal上的检测率为80%。
Hardware-based Malware Detectors (HMDs) have shown promise in detecting malicious workloads. However, the current HMDs focus solely on the CPU core of a System-on-Chip (SoC) and, therefore, do not exploit the full potential of the hardware telemetry. In this paper, we propose XMD, an HMD that uses an expansive set of telemetry channels extracted from the different subsystems of SoC. XMD exploits the thread-level profiling power of the CPU-core telemetry, and the global profiling power of non-core telemetry channels, to achieve significantly better detection performance than currently used Hardware Performance Counter (HPC) based detectors. We leverage the concept of manifold hypothesis to analytically prove that adding non-core telemetry channels improves the separability of the benign and malware classes, resulting in performance gains. We train and evaluate XMD using hardware telemetries collected from 723 benign applications and 1033 malware samples on a commodity Android Operating System (OS)-based mobile device. XMD improves over currently used HPC-based detectors by 32.91% for the in-distribution test data. XMD achieves the best detection performance of 86.54% with a false positive rate of 2.9%, compared to the detection rate of 80%, offered by the best performing signature-based Anti-Virus(AV) on VirusTotal, on the same set of malware samples.