论文标题

BUST2VEC:一种可预测情绪,年龄和来源的对抗性多任务方法

Burst2Vec: An Adversarial Multi-Task Approach for Predicting Emotion, Age, and Origin from Vocal Bursts

论文作者

Anuchitanukul, Atijit, Specia, Lucia

论文摘要

我们介绍了我们的多任务学习方法,以预测人声爆发中的情感,年龄和起源(即祖国/语言)。 BUST2VEC利用预先训练的语音表示来捕获原始波形的声学信息,并通过对抗训练结合了模型的概念。我们的模型使用预摘要的功能获得了基准比基线的相对30%的性能增长,并在ICML EXVO 2022多任务挑战中所有参与者中获得最高分。

We present Burst2Vec, our multi-task learning approach to predict emotion, age, and origin (i.e., native country/language) from vocal bursts. Burst2Vec utilises pre-trained speech representations to capture acoustic information from raw waveforms and incorporates the concept of model debiasing via adversarial training. Our models achieve a relative 30 % performance gain over baselines using pre-extracted features and score the highest amongst all participants in the ICML ExVo 2022 Multi-Task Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源