论文标题
分数Sobolev临界NLSE的归一化基态解决方案,具有额外的质量超临界非线性
Normalized ground state solutions for the fractional Sobolev critical NLSE with an extra mass supercritical nonlinearity
论文作者
论文摘要
本文涉及对于质量超临界分数非线性schrödinger方程的存在归一化基态解决方案,该方程涉及分数Sobolev意义的临界增长。 Palais-Smale序列的紧凑性是通过一种特殊技术获得的,该技术从Soave的思想中借用(J.Funct。Anal。279(6)(2020)1086102020)。本文代表了先前已知的结果的扩展 - 在局部和非局部情况下。
This paper is concerned with existence of normalized ground state solutions for the mass supercritical fractional nonlinear Schrödinger equation involving a critical growth in the fractional Sobolev sense. The compactness of Palais-Smale sequences is obtained by a special technique, which borrows from the ideas of Soave (J. Funct. Anal. 279 (6) (2020) 1086102020). This paper represents an extension of previously known results - in the local and the nonlocal cases.