论文标题

多变量时间序列预测可变子集

Multi-Variate Time Series Forecasting on Variable Subsets

论文作者

Chauhan, Jatin, Raghuveer, Aravindan, Saket, Rishi, Nandy, Jay, Ravindran, Balaraman

论文摘要

我们在多变量时间序列预测(MTSF)的域中制定了一个新的推理任务,称为变量子集预测(VSF),其中仅在推理过程中可用一小部分变量子集。由于长期数据丢失(例如,传感器故障)或列车 /测试之间的高>低资源域移动,因此在推理过程中没有变量。据我们所知,在文献中尚未研究MTSF模型的鲁棒性。通过广泛的评估,我们首先表明,在VSF设置中,最新方法的性能显着降低。我们提出了一种非参数包装技术,可以在任何现有的预测模型上应用。通过在4个数据集和5个预测模型的系统实验中,我们表明我们的技术能够恢复模型的接近95 \%性能,即使仅存在15 \%的原始变量。

We formulate a new inference task in the domain of multivariate time series forecasting (MTSF), called Variable Subset Forecast (VSF), where only a small subset of the variables is available during inference. Variables are absent during inference because of long-term data loss (eg. sensor failures) or high -> low-resource domain shift between train / test. To the best of our knowledge, robustness of MTSF models in presence of such failures, has not been studied in the literature. Through extensive evaluation, we first show that the performance of state of the art methods degrade significantly in the VSF setting. We propose a non-parametric, wrapper technique that can be applied on top any existing forecast models. Through systematic experiments across 4 datasets and 5 forecast models, we show that our technique is able to recover close to 95\% performance of the models even when only 15\% of the original variables are present.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源