论文标题
对Weyl可集成的时空中宇宙野外方程的PANLEVé分析
Painlevé analysis for the cosmological field equations in Weyl Integrable Spacetime
论文作者
论文摘要
我们应用奇异性分析来研究Weyl积分时空中引力场方程的可集成性特性,用于空间平坦的Friedmann--Lemaître-Robertson-Robertson-Walker-Walker背景时空,该时空是由理想气体引起的。我们发现,在宇宙常数的情况下,场方程具有Painlevé特性,并且通过左手素膨胀给出了分析溶液。
We apply singularity analysis to investigate the integrability properties of the gravitational field equations in Weyl Integrable Spacetime for a spatially flat Friedmann--Lemaître--Robertson--Walker background spacetime induced with an ideal gas. We find that the field equations possess the Painlevé property in the presence of the cosmological constant and the analytic solution is given by a left Laurent expansion.