论文标题

审查实验动物的社会行为分析:从方法论到应用

Review on Social Behavior Analysis of Laboratory Animals: From Methodologies to Applications

论文作者

Jiang, Ziping, Chazot, Paul L., Jiang, Richard

论文摘要

作为遗传和生理方面之间的桥梁,动物行为分析是生物学和生态学研究中最重要的主题之一。但是,识别,跟踪和记录动物行为是需要专业知识的劳动密集型作品。为了减轻注释数据的支出,研究人员转向自动标签算法的计算机视觉技术,因为大多数数据都是视觉记录的。在这项工作中,我们探讨了各种行为检测算法,涵盖了传统的视觉方法,统计方法和深度学习方法。这项工作的目的是对相关工作进行彻底研究,为生物学家提供有效的动物行为检测方法。除此之外,我们还讨论了这些算法的优势和劣势,以为已经深入研究这一领域的人们提供一些见解。

As the bridge between genetic and physiological aspects, animal behaviour analysis is one of the most significant topics in biology and ecological research. However, identifying, tracking and recording animal behaviour are labour intensive works that require professional knowledge. To mitigate the spend for annotating data, researchers turn to computer vision techniques for automatic label algorithms, since most of the data are recorded visually. In this work, we explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods. The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods. Apart from that, we also discuss the strengths and weaknesses of those algorithms to provide some insights for those who already delve into this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源