论文标题
$ u(1)中的muon($ g-2 $)
Muon ($g-2$) in $U(1)_{L_μ-L_τ}$ Scotogenic Model Extended with Vector like Fermion
论文作者
论文摘要
Fermilab处异常的磁磁矩的最新结果显示,标准模型(SM)预测和实验值之间的差异为4.2 $σ$。在这项工作中,我们在Scotogenic模型的范式中重新访问$ u(1)_ {l_μ-l_τ} $对称性,该模型同时解释了Muon($ G-2 $)和中微子质量生成。在自发对称破坏$ U(1)_ {l_μ-l_τ} $之后生成的新量规玻色子$ m_ {z_ {μτ}} $,仅根据当前的中微子振荡数据来解释Muon($ G-2 $)。特别是,我们在$ m_ {z_ {μτ}}} -g_ {μτ} $平面中分别获得了两个区域I和II,分别为150 MeV和500 MeV,以解释中性现象学。发现区域I与Muon Neutrino Trident(Mnt)Bound($ g_ {μτ} $ $ $ \ leq $ 10^{ - 3} $)解释Muon($ G-2 $),但是,区域II违反了质量范围$ M_ {Z__ {Z__ {μ{μ300$ 300 $ MEV。然后,我们通过像Lepton(vll)Triplet $ψ_T$这样的向量扩展了最小测量的Scotogenic模型。 $ψ_T$与惰性标量双线$η$的混合会导致对MUON异常磁矩的正面贡献,而独立于$ z_ {μτ} $质量。此外,我们还研究了该模型对$0νβ$衰减和$ cp $违规的含义。 $0νβ$衰减至0.01 eV的灵敏度的非观察性应反驳该模型。总体而言,该模型与$ CP $ Conceerving和CP $违反解决方案都是一致的。
The latest results of anomalous muon magnetic moment at Fermilab show a discrepancy of 4.2 $σ$ between the Standard Model (SM) prediction and experimental value. In this work, we revisit $U(1)_{L_μ-L_τ}$ symmetry with in the paradigm of scotogenic model which explains muon ($g-2$) and neutrino mass generation, simultaneously. The mass of new gauge boson $M_{Z_{μτ}}$ generated after the spontaneous symmetry breaking of $U(1)_{L_μ-L_τ}$ is constrained, solely, in light of the current neutrino oscillation data to explain muon ($g-2$). In particular, we have obtained two regions I and II, around 150 MeV and 500 MeV, respectively, in $M_{Z_{μτ}}-g_{μτ}$ plane which explain the neutrino phenomenology. Region I is found to be consistent with muon neutrino trident (MNT) bound ($g_{μτ}$ $\leq$ $10^{-3}$) to explain muon ($g-2$), however, region II violates it for mass range $M_{Z_{μτ}}>300$ MeV. We, then, extend the minimal gauged scotogenic model by a vector like lepton (VLL) triplet $ψ_T$. The mixing of $ψ_T$ with inert scalar doublet $η$ leads to chirally enhanced positive contribution to muon anomalous magnetic moment independent of $Z_{μτ}$ mass. Furthermore, we have, also, investigated the implication of the model for $0νββ$ decay and $CP$ violation. The non-observation of $0νββ$ decay down to the sensitivity of 0.01 eV shall refute the model. The model, in general,is found to be consistent with both $CP$ conserving and $CP$ violating solutions.