论文标题

非线性光子Chern绝缘子中的拓扑散装孤子

Topological bulk solitons in a nonlinear photonic Chern insulator

论文作者

Li, Rujiang, Kong, Xiangyu, Hang, Dongkai, Li, Guoyi, Hu, Hongyu, Zhou, Hao, Jia, Yongtao, Li, Pengfei, Liu, Ying

论文摘要

具有拓扑带结构的晶格中的非线性可以在大部分结构中诱导拓扑界面,并在拓扑带盖中产生庞大的孤子。在这里,我们研究具有可饱和非线性的光子Chern绝缘子,并显示了拓扑散装孤子的存在。基本散装的孤子词表现为半涡旋孤子,其中只有一个假蛋白成分具有非零的涡度。散装孤子在不同的山谷中具有相等的角动量。这种现象是线性宿主晶格拓扑的直接结果,可以通过切换非线性符号来改变角动量。散装孤子从线性散装带边缘分叉,并在其动力饱和时终止。我们发现这些散装的唯一子量在整个光谱范围内稳定。此外,这些散装的孤子对现场能量和跳跃振幅的晶格疾病都具有鲁棒性。我们的工作将Chern绝缘子的研究扩展到了非线性制度,并突出了拓扑与非线性之间的相互作用。

Nonlinearities in lattices with topological band structures can induce topological interfaces in the bulk of structures and give rise to bulk solitons in the topological bandgaps. Here we study a photonic Chern insulator with saturable nonlinearity and show the existence of topological bulk solitons. The fundamental bulk solitons exhibit as semi-vortex solitons, where only one pseudospin component has a nonzero vorticity. The bulk solitons have equal angular momentum at different valleys. This phenomenon is a direct outcome of the topology of the linear host lattice and the angular momentum can be changed by switching the sign of the nonlinearity. The bulk solitons bifurcate from the linear bulk band edge and terminate when their powers saturate. We find that these bulk solitons are stable within the whole spectrum range. Moreover, these bulk solitons are robust against lattice disorders both from on-site energies and hopping amplitudes. Our work extends the study of Chern insulators into the nonlinear regime and highlights the interplay between topology and nonlinearity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源