论文标题

导致Mobius功能过时的素数

Result on the Mobius Function over Shifted Primes

论文作者

Carella, N. A.

论文摘要

本文提供了用于示例Mobius函数$ \ sum_ {p \ leq x}μ(p+a)= o \ left的新渐近结果在转移的素数上,$ a \ ne0 $是固定参数,而$ c> 1 $是任意常数。这些结果改善了当前估计值$ \ sum_ {p \ leq x}μ(p+a)=(1-δ)π(x)$,和$ \ sum_ {p \ leq x}λ(p+a)=(p+a)=(1-δ)π(x)π(x)$分别为$δ> 0 $。此外,自相关功能的有条件证明$ \ sum_ {p \ leq x}μ(p+a)μ(p+b)= o \ left(x(x(x \ log x)^{ - c} \ right)$,以及自动化功能的无条件证明$ \ sum sum \ sum p+a} p+b) \ left(x(x(\ log x)^{ - c} \右)$上的$ a \ ne b $,也包括在内。

This article provides new asymptotic results for the summatory Mobius function $\sum_{p \leq x} μ(p+a) =O \left (x(\log x)^{-c} \right )$ and the summatory Liouville function $\sum_{p \leq x} λ(p+a) =O \left (x(\log x)^{-c} \right )$ over the shifted primes, where $a\ne0$ is a fixed parameter, and $c>1$ is an arbitrary constant. These results improve the current estimates $\sum_{p \leq x} μ(p+a)=(1-δ)π(x)$, and $\sum_{p \leq x} λ(p+a)=(1-δ)π(x)$ for $δ>0$, respectively. Furthermore, a conditional proof for the autocorrelation function $\sum_{p \leq x} μ(p+a)μ(p+b) =O \left (x(\log x)^{-c} \right )$, and an unconditional proof for the autocorrelation function $\sum_{p \leq x} λ(p+a)λ(p+b) =O \left (x(\log x)^{-c} \right )$ over the shifted primes, where $a\ne b$, are also included.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源