论文标题
各向异性的总变化和表面积测量
The anisotropic total variation and surface area measures
论文作者
论文摘要
我们证明了对数符合函数积分的第一个变化的一个公式,这使我们能够定义此类函数的表面积度量。该公式完全具有一般性,没有规律性假设,并且与各向异性总变化和各向异性coarea公式的概念密切相关。这改善了Colesanti和Fragalà,Cordero-erausquin和Klartag以及作者的先前结果。
We prove a a formula for the first variation of the integral of a log-concave function, which allows us to define the surface area measure of such a function. The formula holds in complete generality with no regularity assumptions, and is intimately related to the notion of anisotropic total variation and to anisotropic coarea formulas. This improves previous partial results by Colesanti and Fragalà, by Cordero-Erausquin and Klartag and by the author.