论文标题

确定性和随机Lorenz-63系统中分形维的新颖概念

A novel concept of fractal dimension in deterministic and stochastic Lorenz-63 systems

论文作者

Alberti, Tommaso, Faranda, Davide, Lucarini, Valerio, Donner, Reik V., Dubrulle, Berengere, Daviaud, Francois

论文摘要

许多自然系统在不同的尺度上显示出紧急现象,从而导致尺度上的签名机制在大尺度上,并且在小尺度上显然是随机的行为。这些特征通常通过研究基础吸引子的性质进行定量研究,即紧凑型物体渐近地托管系统的轨迹,并在相位空间中其不变密度。自然系统的这种多尺度性质使得它几乎不可能清楚地了解吸引集,因为它跨越了广泛的空间尺度,甚至可能由于非平稳强迫而随时间变化。在这里,我们将一种自适应分解方法与极值理论相结合,以研究瞬时尺度依赖性维度的性质,最近引入了该尺度依赖性的尺寸,以表征湍流和天体物理学中这种时间和空间尺度依赖性吸引子。为了对该度量的性质进行定量分析,我们将其对众所周知的低维确定性Lorenz-63系统进行测试,该系统与添加或乘法噪声扰动。我们证明了不变集的特性取决于我们关注的尺度,尽管两种情况在较大尺度上表现出非常相似的随机吸引子,但依赖比例依赖性的维度可以区分添加剂和乘法噪声。提出的形式主义通常可以帮助研究复杂系统中多尺度波动的作用,从而使我们能够处理表征在广泛物理系统中随机波动的作用的问题。

Many natural systems show emergent phenomena at different scales, leading to scaling regimes with signatures of chaos at large scales and an apparently random behavior at small scales. These features are usually investigated quantitatively by studying the properties of the underlying attractor, the compact object asymptotically hosting the trajectories of the system with their invariant density in the phase-space. This multi-scale nature of natural systems makes it practically impossible to get a clear picture of the attracting set as it spans over a wide range of spatial scales and may even change in time due to non-stationary forcing. Here we combine an adaptive decomposition method with extreme value theory to study the properties of the instantaneous scale-dependent dimension, which has been recently introduced to characterize such temporal and spatial scale-dependent attractors in turbulence and astrophysics. To provide a quantitative analysis of the properties of this metric, we test it on the well-known low-dimensional deterministic Lorenz-63 system perturbed with additive or multiplicative noise. We demonstrate that the properties of the invariant set depend on the scale we are focusing on and that the scale-dependent dimensions can discriminate between additive and multiplicative noise, despite the fact that the two cases exhibit very similar stochastic attractors at large scales. The proposed formalism can be generally helpful to investigate the role of multi-scale fluctuations within complex systems, allowing us to deal with the problem of characterizing the role of stochastic fluctuations across a wide range of physical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源