论文标题
多元:用于层间链接预测的多重嵌入算法
MultiSAGE: a multiplex embedding algorithm for inter-layer link prediction
论文作者
论文摘要
近年来,对图表的研究受到了极大的关注。但是,到目前为止,大多数研究都集中在单层图的嵌入上。涉及多层结构的代表性学习问题的少数研究取决于层间链接是已知的强烈假设,这限制了可能的应用范围。在这里,我们提出了允许嵌入多重网络的图形算法的概括。我们表明,多层能够重建层内和层间连接性,超过了图形,该图是为简单图形而设计的。接下来,通过全面的实验分析,我们还以简单和多重网络中的嵌入性能阐明了嵌入性能,表明图形的密度或链接的随机性都会强烈影响嵌入的质量。
Research on graph representation learning has received great attention in recent years. However, most of the studies so far have focused on the embedding of single-layer graphs. The few studies dealing with the problem of representation learning of multilayer structures rely on the strong hypothesis that the inter-layer links are known, and this limits the range of possible applications. Here we propose MultiSAGE, a generalization of the GraphSAGE algorithm that allows to embed multiplex networks. We show that MultiSAGE is capable to reconstruct both the intra-layer and the inter-layer connectivity, outperforming GraphSAGE, which has been designed for simple graphs. Next, through a comprehensive experimental analysis, we shed light also on the performance of the embedding, both in simple and in multiplex networks, showing that either the density of the graph or the randomness of the links strongly influences the quality of the embedding.